Chemistry of Diazopolycarbonyl Compounds: IX.* Synthesis of 6-Aryl-3-acyl-4-hydroxypyridazines by Heterocyclization of 1,5-Disubstituted 2-Diazo-1,3,5-pentanetriones

N. V. Kutkovaya, ${ }^{1}$ N. A. Pulina, ${ }^{2}$ and V. V. Zalesov ${ }^{3}$
${ }^{1}$ Research Institute of Vaccines and Serums, Biomed Federal State Unitary Enterprise
${ }^{2}$ Perm State Pharmaceutical Academy, Perm, Russia
${ }^{3}$ Perm State University, ul. Bukireva 15, Perm, 614600 Russia

Received January 22, 2003

Abstract

Aryl-2-diazo-1,3,5-pentanetriones undergo intramolecular cyclization by the action of triphenylphosphine to give triphenylphosphine oxide and substituted 6-aryl-3-acyl-4-hydroxypyridazines.

We previously showed $[2,3]$ that some ethyl 5-aryl-2-diazo-5-hydroxy-3-oxo-4-pentenoates undergo intramolecular cyclization into ethyl 6-aryl-4-hydroxypyri-dazine-3-carboxylates by the action of triphenylphosphine. It was presumed that the cyclization involves the β-diketone tautomer of diazo esters. Later on, we found that the above diazo esters and structurally related 1,5-diaryl-2-diazo-5-hydroxy-4-pentene-1,3-diones in solution are enolized only partially [1]. In the present work we examined the possibility for analogous intramolecular cyclization of 5-aryl-2-di-azo-1,3,5-pentanetriones having various substituents in position 1. For this purpose, by reactions of aroyldiazomethanes, adamantylcarbonyldiazometanes, and phthalimido- α-diazoketones with aroylketenes [1] we synthesized 1,5-diaryl-2-diazo-1,3,5-pentanetriones Ia-Ii, 1-(1-adamantyl)-5-aryl-2-diazo-1,3,5-pentanetri-
ones $\mathbf{I j}$-Im, and 5-aryl-2-diazo-1-phthalimidoalkyl-1,3,5-pentanetriones In-It (Table 1).

According to the ${ }^{1} \mathrm{H}$ NMR data, compounds I in solution are partially enolized [1]. Newly synthesized diazopentanetriones In, Io, and Iq-It containing a phthalimido group are also partially enolized in DMSO, the fraction of the diketone tautomer \mathbf{B} being 22 to 43%. In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds In, $\mathbf{I o}$, and $\mathbf{I q}-\mathbf{I t}$, methylene protons of the β-diketone form (B) give a singlet at $\delta 4.32-4.51 \mathrm{ppm}$, while signals from the methine proton and proton of the hydroxy group of the enol form (A) appear, respectively, at $\delta 6.45-7.03$ and $15.05-15.65 \mathrm{ppm}$.

The IR spectra of compounds In-It in mineral oil contain absorption bands at $1655-1682 \mathrm{~cm}^{-1}$ due to stretching vibrations of the ketone carbonyl $\left(\mathrm{C}^{1}=\mathrm{O}\right)$ and at $1605-1615 \mathrm{~cm}^{-1}$, the latter belonging to the

Scheme 1.

I, II, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}=\mathrm{H}(\mathbf{a}), \mathrm{Me}(\mathbf{b}), \mathrm{MeO}(\mathbf{c}), \mathrm{Cl}(\mathbf{d}), \mathrm{Br}(\mathbf{e}) ; \mathrm{R}^{1}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{MeO}(\mathbf{f}) ; \mathrm{R}^{1}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{H}(\mathbf{g}), \mathrm{MeO}(\mathbf{h}), \mathrm{Br}(\mathbf{i})$; $\mathrm{R}^{1}=1-\mathrm{Ad}, \mathrm{R}=\mathrm{H}(\mathbf{j})$, $\mathrm{Me}(\mathbf{k}), \mathrm{MeO}(\mathbf{l}), \mathrm{C} 1(\mathbf{m}) ; \mathrm{R}^{1}=\operatorname{PhthCH}(\mathrm{Me}), \mathrm{R}=\mathrm{H}(\mathbf{n}), \mathrm{Me}(\mathbf{o}), \mathrm{MeO}(\mathbf{p}) ; \mathrm{R}^{1}=\mathrm{PhthCH}_{2} \mathrm{CH}_{2}, \mathrm{R}=\mathrm{H}(\mathbf{q})$; $\mathrm{R}^{1}=\operatorname{PhthCH} \mathrm{H}_{2}, \mathrm{R}=\mathrm{Me}(\mathbf{r}) ; \mathrm{R}^{1}=\operatorname{PhthCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), \mathrm{R}=\mathrm{Me}(\mathbf{s}) ; \mathrm{R}^{1}=\operatorname{Phth}\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{R}=\mathrm{MeO}(\mathbf{t}) ; \operatorname{Phth}$ is phthalimido.

[^0]Table 1. IR and ${ }^{1} \mathrm{H}$ NMR spectra and $\mathbf{A}: \mathbf{B}$ tautomer ratios of compounds In-It and IIa-IIq

Comp. no.	IR spectrum, $v, \mathrm{~cm}^{-1}$	${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm					A:B tautomer ratio, solvent
		aliphatic protons ${ }^{\text {a }}$	CH_{2}, s	$=\mathrm{CH}, \mathrm{s}$	Ar, m	OH, s	
In	$\begin{aligned} & 2125\left(\mathrm{~N}_{2}\right) ; 1768,1712(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1671\left(\mathrm{C}^{1}=\mathrm{O}\right) ; 1606 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 1.58 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 5.51 \mathrm{q} \text { and } 5.38 \mathrm{q}(1 \mathrm{H}, \mathrm{CH}) \end{aligned}$	4.50	7.03	7.85	15.35	$\begin{gathered} 66: 34, \\ \text { DMSO- } d_{6} \end{gathered}$
Io	$\begin{aligned} & 2129\left(\mathrm{~N}_{2}\right) ; 1768,1703(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) 1665\left(\mathrm{C}^{1}=\mathrm{O}\right) ; 1605 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 1.60 \mathrm{~d} \text { and } 1.50 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 2.38 \mathrm{~s} \text { and } 2.52 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), \\ & 5.50 \mathrm{q} \text { and } 5.38 \mathrm{q}(1 \mathrm{H}, \mathrm{CH}) \end{aligned}$	4.48	6.99	7.85	15.41	$\begin{gathered} 73: 27, \\ \text { DMSO- } d_{6} \end{gathered}$
Ip	$\begin{aligned} & 2130\left(\mathrm{~N}_{2}\right) ; 1771,1720(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1682\left(\mathrm{C}^{1}=\mathrm{O}\right) ; 1607 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$						
Iq	$\begin{aligned} & 2138\left(\mathrm{~N}_{2}\right) ; 1770,1710(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1655\left(\mathrm{C}^{1}=\mathrm{O}\right) ; 1615 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 3.22 \mathrm{t} \text { and } 3.11 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 3.94 \mathrm{t} \text { and } 3.82 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right) \end{aligned}$	4.51	7.02	7.80	15.48	$\begin{gathered} 78: 22, \\ \text { DMSO- }_{6} \end{gathered}$
Ir	$\begin{aligned} & 2132\left(\mathrm{~N}_{2}\right) ; 1770,1720(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1668\left(\mathrm{C}^{1}=\mathrm{O}\right), 1608 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 2.45 \mathrm{~s} \text { and } 2.55 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 4.82 \mathrm{~s} \text { and } 4.65 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right) \end{aligned}$	4.32	6.45	7.71	15.32	$\begin{aligned} & 60: 40, \\ & \mathrm{CDCl}_{3} \end{aligned}$
Is	$\begin{aligned} & 2130\left(\mathrm{~N}_{2}\right) ; 1770,1728(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1678\left(\mathrm{C}^{1}=\mathrm{O}\right) ; 1605 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 1.03 \mathrm{t}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), \\ & 2.22 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), \\ & 2.42 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), \\ & 5.18 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right) \end{aligned}$		6.85	7.67	15.05	CDCl_{3}
It ${ }^{\text {b }}$	$\begin{aligned} & 2131\left(\mathrm{~N}_{2}\right) ; 1767,1714(\mathrm{C}=\mathrm{O}, \\ & \text { Phth }) ; 1651\left(\mathrm{C}^{1}=\mathrm{O}\right): 1598 \\ & \left(\mathrm{C}^{3}=\mathrm{O}\right) \end{aligned}$	$\begin{aligned} & 2.05 \mathrm{~m} \text { and } 1.92 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 2.80 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 3.73 \mathrm{t} \text { and } 3.65 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 3.90 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$	4.32	6.82	7.70	15.65	$\begin{gathered} 78: 22, \\ \text { DMSO- } d_{6} \end{gathered}$
IIa	3200 sh (OH), $1684(\mathrm{C}=\mathrm{O})$			6.70	7.65	13.61	$\begin{aligned} & \mathrm{DMSO}_{4}- \\ & \mathrm{CCl}_{4}(1: 3) \end{aligned}$
IIb	3234 (OH), 1673 (C=O)	$2.32 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$		6.73	7.55	13.88	DMSO- d_{6}
IIc	3150 sh (OH), $1672(\mathrm{C}=\mathrm{O})$	$3.89 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$		6.64	7.50	13.42	$\begin{aligned} & \text { DMSO- } d_{6}- \\ & \text { CCl }_{4}(1: 3) \end{aligned}$
IId	3200 sh (OH), $1664(\mathrm{C}=\mathrm{O})$			6.75	7.70	13.60	$\begin{aligned} & \text { DMSO- } d_{6}- \\ & \text { CCl }_{4}(1: 3) \end{aligned}$
IIe	3100 sh (OH), $1664(\mathrm{C}=\mathrm{O})$			6.73	7.75	13.62	$\begin{aligned} & \text { DMSO- } d_{6}- \\ & \text { CCl }_{4}(1: 3) \end{aligned}$
IIf	$\begin{aligned} & 3120 \operatorname{sh}(\mathrm{OH}) ; 1675,1672 \\ & (\mathrm{C}=\mathrm{O}) \end{aligned}$						
IIg	3190 (OH), 1676 (C=O)			6.77	7.93	13.78	$\begin{aligned} & \text { DMSO- } d_{6}- \\ & \mathrm{CCl}_{4}(1: 3) \end{aligned}$
IIh	3116 (OH), $1674(\mathrm{C}=\mathrm{O})$						
III	3223 (OH), 1653 ($\mathrm{C}=\mathrm{O}$)						
IIj ${ }^{\text {c }}$	3237 (OH), 1690 ($\mathrm{C}=\mathrm{O}$)	$1.87 \mathrm{~m}\left(15 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}_{15}\right)$		6.66	7.54		DMSO- d_{6}
IIk	$3205(\mathrm{OH}), 1695$ (C=O)	$\begin{aligned} & 1.88 \mathrm{~m}\left(15 \mathrm{H}, \mathrm{C}_{10} \mathrm{H}_{15}\right), \\ & 2.35 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$		6.63	7.46	13.28	DMSO- d_{6}
III	$3183(\mathrm{OH}), 1703(\mathrm{C}=\mathrm{O})$						
IIm	3181 (OH), 1705 ($\mathrm{C}=\mathrm{O}$)						
IIn	1770, 1715, 1705 (C=O)	$\begin{aligned} & 1.65 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), \\ & 5.72 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right) \end{aligned}$		6.80	7.70	13.82	DMSO- d_{6}

Table 1. (Contd.)

Comp. no.	IR spectrum, v, cm^{-1}	${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm				A:B tautomer ratio, solvent
		aliphatic protons	$=\mathrm{CH}, \mathrm{s}$	Ar, m	OH, s	
IIo	1773, 1710 br (C=O)	$\begin{aligned} & 1.62 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.38 \mathrm{~s}(3 \mathrm{H}, \\ & \left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 5.71 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right) \end{aligned}$	6.75	7.65	13.75	DMSO- d_{6}
$\mathbf{I I p}{ }^{\text {c }}$	$\begin{aligned} & 3217(\mathrm{OH}) ; 1775,1705, \\ & 1699 \mathrm{br}(\mathrm{C}=\mathrm{O}) \end{aligned}$	$\begin{aligned} & 1.63 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.15 \mathrm{~s}(3 \mathrm{H}, \\ & \left.\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right), 5.80 \mathrm{q}(1 \mathrm{H}, \mathrm{CH}) \end{aligned}$	6.74	7.60		DMSO- d_{6}
IIq	1773, 1710, 1697 (C=O)	$3.40 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.95 \mathrm{t}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$	6.78	7.73	13.71	DMSO- d_{6}

${ }^{\text {a }}$ The two sets of signals from aliphatic protons refer to the enol and ketone tautomers, respectively.
${ }^{\mathrm{b}}$ The mass spectrum of It contained the molecular ion peak, $m / z 433\left(I_{\text {rel }} 5 \%\right)$, and the following fragment ion peaks, $m / z\left(I_{\text {rel }}, \%\right)$: 405 (73) $\left.\left[M-\mathrm{N}_{2}\right]^{+}, 273(12)\left[M-\operatorname{Phth}\left(\mathrm{CH}_{2}\right)_{3}\right]^{+}, 245(100)\left[\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COCH}_{2} \mathrm{COCN}_{2} \mathrm{CO}\right]^{+}, 216(52)\left[\mathrm{Phth}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}\right]^{+}, 188(25)\left[\mathrm{Phth}^{(} \mathrm{CH}_{2}\right)_{3}\right]^{+}, 160$ (65) $\left[\mathrm{PhthCH}_{2}\right]^{+}, 135(59)\left[\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}\right]^{+}$.
${ }^{\text {c }}$ No signal from the enol hydroxy proton was observed in the ${ }^{1} \mathrm{H}$ NMR spectra of compounds IIj and IIp, presumably due to its considerable broadening.
$\mathrm{C}^{3}=\mathrm{O}$ carbonyl group involved in intramolecular hydrogen bond (H -chelate ring).

We made an attempt to obtain triphenylphosphazines from diazotriketones $\mathbf{I a}-\mathbf{I q}$ by reaction of the latter with triphenylphosphine. However, these reaction resulted in formation of triphenylphosphine oxide and the corresponding substituted 3-acyl-6-aryl-4hydroxypyridazines IIa-IIq (Table 1). The IR spectra of compounds IIa-IIq contained a weak absorption band (or a plateau) in the region $3100-3237 \mathrm{~cm}^{-1}$, which is typical of stretching vibrations of enol hydroxy group, and ketone carbonyl absorption at $1653-1705 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectra of IIa-IIs, characteristic signals were a singlet at $\delta 6.63-6.80 \mathrm{ppm}$ from $5-\mathrm{H}$ in the pyridazine ring and a broadened singlet at $\delta 13.28-13.88 \mathrm{ppm}$ from the enol hydroxy proton. The high-frequency shift of the carbonyl absorption band in the IR spectra of II and upfield position of the enol proton signal in their ${ }^{1} \mathrm{H}$ NMR spectra, as compared to initial diazopentanetriones \mathbf{I}, indicate that the intramolecular hydrogen bond in II is weaker than in I. A probable reason is acoplanar arrangement of the pyridazine ring and the acyl substituent.

Presumably, the intramolecular cyclization of diazopentanetriones I begins with formation of inter-
mediate triphenylphosphazine \mathbf{C} which then undergoes ring closure to 4,5-dihydropyridazin-4-one D via elimination of triphenylphosphine oxide. Enolization of ketone D yields 4-hydroxypyridazine II. The cyclization is likely to involve the β-diketone form (B) of diazo compounds \mathbf{I}.

EXPERIMENTAL

The IR spectra were recorded on an FSM-1201 spectrometer in mineral oil. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker WR-80-SY instrument (80 MHz) using CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as solvent and HMDS as internal reference. The mass spectrum of It (electron impact, 70 eV) was recorded on a Varian MAT-311A mass spectrometer (emission current 1000 mA , vaporizer temperature $120-150^{\circ} \mathrm{C}$, ion source temperature $200^{\circ} \mathrm{C}$). The progress of reactions and the purity of products were monitored by TLC on Silufol UV-254 plates using diethyl ether-benzene-acetone ($10: 9: 1$) as eluent (development with iodine vapor).

4-Diazo-1-phenyl-6-phthalimido-1,3,5-heptanetrione ($\mathbf{I n}$). A solution of 2.43 g of $(0.01 \mathrm{~mol})$ of 1-diazo-3-phthalimidobutan-2-one and 1.74 g (0.01 mol) of 5-phenyl-2,3-dihydrofuran-2,3-dione [4] in 40 ml of anhydrous benzene was heated for 3 h under reflux. The mixture was evaporated, and the

Scheme 2.

Table 2. Yields, melting points, and elemental analyses of compounds In-It and IIa-IIq

Comp no.	Yield, \%	$\begin{gathered} \mathrm{mp},{ }^{\circ} \mathrm{C} \\ \text { (decomp.) } \end{gathered}$	Found, \%				Formula	Calculated, \%			
			C	H	N	Hlg		C	H	N	Hlg
In	39	149-149.5	64.82	3.72	10.87	-	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{3}$	64.78	3.88	10.79	-
Io	40	153-154	64.89	4.07	10.56	-	$\mathrm{C}_{22} \mathrm{~N}_{17} \mathrm{O}_{5} \mathrm{~N}_{3}$	65.01	4.25	10.42	-
Ip	47	144-145	63.11	4.20	9.95	-	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~N}_{3}$	63.00	4.08	10.02	-
Iq	40	133-134	64.62	4.01	10.75	-	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{~N}_{3}$	64.78	3.88	10.79	-
Ir	44	153-154	64.70	3.92	10.81	-	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{6} \mathrm{~N}_{3}$	64.78	3.88	10.79	-
Is	32	129-130	66.24	4.71	9.98	-	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{3}$	66.18	4.59	10.07	-
It	17	112-115	63.65	4.54	9.56	-	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}_{3}$	63.74	4.42	9.70	-
IIa	62	249-251	74.02	4.34	10.03	-	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}_{2}$	73.90	4.38	10.14	-
IIb	68	230-231	74.31	4.79	9.74	-	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}$	74.47	4.86	9.65	-
IIC	38	260-261	70.64	4.57	9.27	-	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}$	70.58	4.61	9.15	-
IId	82	258-260	65.64	3.69	9.12	11.32	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}$	65.71	3.57	9.01	11.41
IIe	75	264-266	57.61	3.31	7.75	22.41	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Br}$	57.49	3.12	7.89	22.50
IIf	21	296-298	56.05	3.29	7.15	20.83	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{Br}$	56.13	3.40	7.27	20.74
IIg	46	273-275	63.49	3.54	13.21	-	$\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{~N}_{3}$	63.55	3.45	13.08	-
IIh	81	295-297	61.59	3.85	12.05	-	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~N}_{3}$	61.54	3.73	11.96	-
IIi	66	292-293	50.92	2.68	10.62	20.01	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N}_{3} \mathrm{Br}$	51.02	2.52	10.50	19.97
IIj	78	208-209	73.31	6.53	8.04	-	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}_{2}$	73.23	6.44	8.13	-
IIk	53	336-337	73.86	6.62	7.94	-	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{2}$	73.72	6.75	7.82	-
III	25	288-291	72.40	6.51	7.80	-	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}_{3}$	72.51	6.64	7.69	-
IIm		311-313	68.51	5.80	7.47	9.75	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Cl}$	68.38	5.74	7.59	9.61
IIn	42	242-244	67.49	4.16	11.31	-	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}_{3}$	67.55	4.05	11.26	-
IIo	35	246-248	68.19	4.16	10.71	-	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{3}$	68.21	4.25	10.85	-
IIp	79	267-268	64.92	4.38	10.56	-	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}_{3}$	65.01	4.25	10.42	-
IIq	56	218-221	67.67	4.19	11.30	-	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~N}_{3}$	67.55	4.05	11.26	-

residue was recrystallized from acetone. Yield 1.52 g (39\%). mp 149-149.5 ${ }^{\circ} \mathrm{C}$. Compounds Io-It were synthesized in a similar way.

3-Benzoyl-4-hydroxy-6-phenylpyridazine (II). A solution of $2.92 \mathrm{~g}(0.01 \mathrm{~mol})$ of diazo compound $\mathbf{I a}$ and $2.62 \mathrm{~g}(0.01 \mathrm{~mol})$ of triphenylphosphine in 50 ml of anhydrous diethyl ether was kept for 48 h at $20-$ $25^{\circ} \mathrm{C}$. The mixture was evaporated, and the residue was recrystallized from dioxane. Yield $1.81 \mathrm{~g}(62 \%)$. Decomposition point $249-251^{\circ} \mathrm{C}$. Compounds IIb-IIq were synthesized in a similar way.

REFERENCES

1. Kovylyaeva, N.V., Vyaznikova, N.G., and Zalesov, V.V., Russ. J. Org. Chem., 2003, vol. 39, p. 1644.
2. Zalesov, V.V., Vyaznikova, N.G., and Andreichikov, Yu.S., Russ. J. Org. Chem., 1996, vol. 32, p. 705.
3. Aliev, Z.G., Vyaznikova, N.G., Zalesov, V.V., Kataev, S.S., Andreichikov, Yu.S., and Akhovmyan, L.O., Izv. Ross. Akad. Nauk, Ser. Khim., 1997, p. 2260.
4. Andreichikov, Yu.S., Gein, V.L., and Gein, L.F., Zh. Org. Khim., 1981, vol. 17, p. 631.

[^0]: * For communication VIII, see [1].

